Désignation de l'alliage | Composition chimique | Autres | Aluminium | ||||||||||||
Numérique | Symbolique | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Ga | V | Remarques | Chaque (max.) | Total (max.) | min. |
EN AW-1050A | EN AW-Al 99,5 | 0,25 max. | 0,40 max. | 0,05 max. | 0,05 max. | 0,05 max. | - | 0,07 max. | 0,05 max. | - | - | - | 0,03 | - | 99,5 |
EN AW-1070A | EN AW-Al 99,7 | 0,20 max. | 0,25 max. | 0,03 max. | 0,03 max. | 0,03 max. | - | 0,07 max. | 0,03 max. | - | - | - | 0,03 | - | 99,7 |
EN AW-1200 | EN AW-Al 99,0 | 1,00 Si+ Fe | 0,05 max. | 0,05 max. | - | - | 0,1 max. | 0,05 max. | - | - | - | 0,05 | 0,15 | 99 | |
EN AW-2017A 1) | EN AW-Al CuMgSi(A) | 0,20 - 0,8 | 0,70 max. | 3,5 - 4,5 | 0,40 - 1,0 | 0,40 - 1,0 | 0,1 max. | 0,25 max. | - | - | - | 0,25 Zr + Ti | 0,05 | 0,15 | Reste |
EN AW-2024 | EN AW-Al CuMg1 | 0,50 max. | 0,5 max. | 3,8 - 4,9 | 0,30 - 0,9 | 1,2 - 1,8 | 0,1 max. | 0,25 max. | 0,15 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-3003 | EN AW-Al Mn1Cu | 0,60 max. | 0,7 max. | 0,05 - 0,20 | 1,0 - 1,5 | - | - | 0,1 max. | - | - | - | - | 0,05 | 0,15 | Reste |
EN AW-3005 | EN AW-Al Mn1Mg0,5 | 0,60 max. | 0,7 max. | 0,3 max. | 1,0 - 1,5 | 0,20 - 0,6 | 0,1 max. | 0,25 max. | 0,1 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-3105 | EN AW-AlMn0,5Mg0,5 | 0,60 max. | 0,7 max. | 0,3 max. | 0,30 - 0,8 | 0,20 - 0,8 | 0,2 max. | 0,40 max. | 0,1 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-5005 | EN AW-AlMg1(B) | 0,30 max. | 0,7 max. | 0,2 max. | 0,2 max. | 0,50-1,1 | 0,1 max. | - | 0,25 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-5052 | EN AW-Al Mg2,5 | 0,25 | 0,40 max. | 0,1 max. | 0,1 max. | 2,2 - 2,8 | 0,15 - 0,35 | 0,1 max. | - | - | - | - | 0,05 | 0,15 | Reste |
EN AW-5083 | EN AW-Al Mg4,5Mn0,7 | 0,40 max. | 0,40 max. | 0,1 max. | 0,40 - 1,0 | 4,0 - 4,9 | 0,05 - 0,2 | 0,25 max. | 0,15 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-5086 | EN AW-Al Mg4 | 0,40 max. | 0,50 max. | 0,1 max. | 0,20 - 0,7 | 3,5 - 4,5 | 0,05 - 0,2 | 0,25 max. | 0,15 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-5182 | EN AW-Al Mg4,5Mn0,4 | 0,20 max. | 0,35 max. | 0,15 max. | 0,20 - 0,50 | 4,0 - 5,0 | 0,1 max. | 0,25 max. | 0,1 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-5657 | EN AW-Al 99,85Mgl(A) | 0,08 max. | 0,10 max. | 0,1 max. | 0,03 max. | 0,6-1,0 | - | - | 0,05 max. | 0,03 | 0,05 | - | 0,02 | 0,05 | Reste |
EN AW-5754 2) | EN AW-Al Mg3 | 0,40 max. | 0,40 max. | 0,1 max. | 0,50 max. | 2,6 - 3,6 | 0,30 | 0,2 max. | 0,15 max. | - | - | 0,10 - 0,6 Mn + Cr | 0,05 | 0,15 | Reste |
EN AW-6016 | EN AW-Al Si1,2Mg0,4 | 1,0 - 1,5 | 0,50 max. | 0,2 max. | 0,2 max. | 0,25 - 0,6 | 0,1 max. | 0,2 max. | 0,15 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-6082 | EN AW-Al Si1MgMn | 0,7 - 1,3 | 0,50 max. | 0,1 max. | 0,40 - 1,0 | 0,6 - 1,2 | 0,2 max.5 | 0,2 max. | 0,1 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-7075 | EN AW-Al Zn5,5MgCu | 0,40 max. | 0,50 max. | 1,2 - 2,0 | 0,30 max. | 2,1 - 2,9 | 0,18 - 0,28 | 5,1 - 6,1 | 0,2 max. | - | - | - | 0,05 | 0,15 | Reste |
EN AW-8011A | EN AW-Al FeSi(A) | 0,40 - 0,8 | 0,50 - 1,0 | 0,1 max. | 0,1 max. max. | 0,1 max. | 0,1 max. | 0,1 max. | 0,05 max. | - | - | - | 0,05 | 0,15 | Reste |
Chez VINCO, nous sommes spécialisés dans la fourniture de cerclages en aluminium avec une grande variété d'options de finition, de tolérances et d'états de traitement - qui déterminent les caractéristiques mécaniques de ce type de cerclage -. En connaissant chacun des états, les valeurs minimales et maximales de la résistance à la traction, de la limite d'élasticité et de l'allongement minimal en pourcentage en fonction de l'épaisseur seront déterminées.
Les principales étapes de la transformation de l'aluminium sont résumées en cinq points :
F : Poids brut de fabrication. Dans ce cas, il s'applique aux produits qui ne nécessitent pas de contrôle des conditions thermiques ou de déformation à froid qui ont été utilisées au moment de la fabrication.Il n'y a pas de valeurs établies pour les caractéristiques mécaniques.
O : Recuit. Appliqué aux produits semi-finis en aluminium pour obtenir l'état de résistance le plus bas.
H : Acrylique. Généralement utilisé dans les stratifiés/stretch stratifiés. S'applique aux demi-produits dont la résistance a été augmentée par déformation à froid, avec ou sans traitement thermique intermédiaire pour obtenir une certaine réduction des caractéristiques mécaniques.
W : Traitement thermique de mise en solution et trempe. Statut qui s'applique aux produits en aluminium dont les alliages mûrissent spontanément à température ambiante après un traitement thermique de mise en solution et une trempe. Ce statut ne doit être utilisé que lorsque le temps de maturation naturelle est indiqué. Par exemple W1/2 heure.
T : Traitement thermique de durcissement structurel. Application aux demi-produits dont la résistance mécanique est augmentée par un traitement thermique avec ou sans acritude supplémentaire, afin d'obtenir des états stables.
Les bandes d'aluminium trempées Acriton ont un certain nombre de spécifications qui dépendent des deuxième et troisième chiffres de la nomenclature (HXX). Chacune d'entre elles est énumérée ci-dessous et tous les détails peuvent être trouvés dans la section statut :
ACCRITUDE | Variation spécifique au processus | H1: acritude |
---|---|---|
H2: acritude et recuit partiel | ||
H3: acritude et stabilisé | ||
Caractéristiques mécaniques | HX2: état ¼ dur | |
HX4: état semi-dur | ||
HX6: état ¾ dur | ||
HX8: état dur | ||
HX9: état extradur | ||
Applicable à tous les alliages corroyés | H (x)11: après recuit, durcissement par déformation à froid, ce qui l'empêche d'être classé à l'état réduit (0) | |
H 112: durcissement par écrouissage à haute température | ||
H 113: S'applique aux tôles qui, après recuit, durcissent par déformation à froid de manière à ne pas être considérées comme des tôles réduites.(0) |
Pour les bandes d'aluminium trempées structurellement, il existe également un certain nombre de subdivisions en fonction des chiffres qui sont placés après la lettre T dans la nomenclature (TXXX). Toutes ces subdivisions sont détaillées dans la section "statut" de la fiche produit.
En ce qui concerne les finitions disponibles pour la fourniture de bandes d'aluminium, VINCO offre un large éventail de possibilités, dont l'aluminium anodisable et l'aluminium anodisé. L'anodisation consiste à créer, par un procédé électrolytique, une couche d'oxyde superficielle qui protège le matériau contre l'usure par frottement, la corrosion, l'isolation électrique et, par conséquent, augmente sa durée de vie. Contactez-nous pour plus d'informations.
Dans la fiche produit, vous pouvez consulter toutes les informations disponibles pour la bande d'aluminium concernant la composition chimique, les équivalences selon la norme européenne (EN), les caractéristiques mécaniques en fonction de la qualité du matériau et les tolérances pour chacun des alliages : tolérances en épaisseur, en largeur, en déflexion et tolérance de planéité.
Si vous avez d'autres questions, n'hésitez pas à contacter notre équipe d'experts au (+34) 94 412 33 99 ou par courriel à info@vinco.es.
NORME EUROPÉENNE (EN) | Équivalences internationales approximatives | ||||||
Classification numérique | Classification symbolique | É.-U. (AISI) | JAPON (JIS) | CHINE (GB) | |||
EN AW-1050A | EN AW-Al 99,5 | ||||||
EN AW-1070A | EN AW-Al 99,7 | ||||||
EN AW-1200 | EN AW-Al 99,0 | ||||||
EN AW-2017A | EN AW-Al CuMgSi(A) | ||||||
EN AW-2024 | EN AW-Al CuMg1 | ||||||
EN AW-3003 | EN AW-Al Mn1Cu | ||||||
EN AW-3005 | EN AW-Al Mn1Mg0,5 | ||||||
EN AW-3105 | EN AW-Al Mn0,5Mg0,5 | ||||||
EN AW-5005 | EN AW-Al Mg1(B) | ||||||
EN AW-5052 | EN AW-Al Mg2,5 | ||||||
EN AW-5083 | EN AW-Al Mg4,5Mn0,7 | ||||||
EN AW-5086 | EN AW-Al Mg4 | ||||||
EN AW-5182 | EN AW-Al Mg4,5Mn0,4 | ||||||
EN AW-5657 | EN AW-Al 99,85Mgl(A) | ||||||
EN AW-5754 | EN AW-Al Mg3 | ||||||
EN AW-6016 | EN AW-Al Si1,2Mg0,4 | ||||||
EN AW-6082 | EN AW-Al Si1MgMn | ||||||
EN AW-7075 | EN AW-Al Zn5,5MgCu | ||||||
EN AW-8011A | EN AW-Al FeSi(A) |
PROPRIÉTÉS MÉCANIQUES FEUILLARD DE ALUMINIUM EN 485-2
QUALITÉ DE L'ALUMINIUM | État de traitement | Résistance à la traction Rm | Limite élastique Rp02 | Allongement minimum % (en fonction d'une épaisseur croissante) | |||
N/mm2 | |||||||
Désignation | Norme | Min. | Max. | Min. | Max. | A50 mm | |
EN AW-1050A (Al 99,5) | EN 485 | 0/H111 | 65 | 95 | 20 | - | 20-29 |
H14 | 105 | 145 | 85 | - | 2-5 | ||
H16 | 120 | 160 | 100 | - | 1-3 | ||
H18 | 135 | - | 120 | - | 1-2 | ||
H22 | 85 | 125 | 55 | - | 4-11 | ||
H24 | 105 | 145 | 75 | - | 3-8 | ||
H26 | 120 | 160 | 90 | - | 2-4 | ||
EN AW-1070 (Al 99,7) | EN 485 | 0/H111 | 60 | 90 | 15 | - | 23-32 |
H18 | 125 | - | 105 | - | 2 | ||
H22 | 80 | 120 | 50 | - | 7-12 | ||
H24 | 100 | 140 | 60 | - | 5-9 | ||
EN AW-1200 (Al 99,0) | EN 485 | 0/H111 | 75 | 105 | 25 | - | 19-28 |
H14 | 105 | 155 | 95 | - | 1-5 | ||
H18 | 150 | - | 130 | - | 1-2 | ||
H19 | 160 | - | 140 | - | 1 | ||
H24 | 115 | 155 | 90 | - | 3-7 | ||
AW-2017A (Al Cu4MgSi(A)) | EN 485 | O | - | 225 | - | 145 | 12-14 |
T4 | 390 | - | 245 | - | 14-15 | ||
AW-2024 (Al Cu4Mg1) | EN 485 | O | - | 220 | - | 140 | 12-13 |
T4 | 425 | - | 275 | - | 12-14 | ||
EN AW-3003 (Al Mn1Cu) | EN 485 | 0/H111 | 95 | 135 | 35 | - | 15-23 |
H14 | 145 | 185 | 125 | - | 2-4 | ||
H16 | 170 | 210 | 150 | - | 1-2 | ||
H18 | 190 | - | 170 | - | 1-2 | ||
H24 | 145 | 185 | 115 | - | 4-6 | ||
H26 | 170 | 210 | 140 | - | 2-3 | ||
EN AW-3005 (Al Mn1Mg0,5) | EN 485 | H111 | 115 | 165 | 45 | - | 12-19 |
H14 | 170 | 215 | 150 | - | 1-3 | ||
H22 | 145 | 195 | 110 | - | 5-7 | ||
H24 | 170 | 215 | 130 | - | 4 | ||
H28 | 220 | - | 190 | - | 2-3 | ||
EN AW-3105 (Al Mn0,5Mg0,5) | EN 485 | H111 | 100 | 155 | 40 | - | 14-17 |
H18 | 195 | - | 180 | - | 1 | ||
H24 | 150 | 200 | 120 | - | 4-5 | ||
EN AW-5005 (Al Mg1(B)) | EN 485 | H111 | 100 | 145 | 35 | - | 15-22 |
H18 | 185 | - | 165 | - | 1-2 | ||
H34 | 145 | 185 | 110 | - | 3-6 | ||
H36 | 165 | 205 | 135 | - | 2-4 | ||
EN AW-5052 (Al Mg2,5) | EN 485 | 0/H111 | 170 | 215 | 65 | - | 12-18 |
H14 | 230 | 280 | 180 | - | 3-4 | ||
H18 | 270 | - | 240 | - | 1-2 | ||
H34 | 230 | 280 | 150 | - | 4-7 | ||
EN AW-5083 (Al Mg4,5Mn0,7) | EN 485 | H111 | 275 | 350 | 125 | - | 11-15 |
H321 | 305 | 385 | 215 | - | 8-10 | ||
H32 | 305 | 380 | 215 | - | 5-8 | ||
H34 | 340 | 400 | 250 | - | 4-7 | ||
EN AW-5086 (Al Mg4) | EN 485 | H111 | 240 | 310 | 100 | - | 11-17 |
EN AW-5182 (Al Mg4,5Mn0,4) | EN 485 | H111 | 255 | 315 | 110 | - | 11-13 |
EN AW-5657 (Al 99,85 Mg1(A)) | EN 485 | H242 | 125 | 170 | 100 | - | 13 |
H25 | 140 | 180 | 110 | - | 5 | ||
H26 | 150 | 190 | 120 | - | 3 | ||
EN AW-5754 (Al Mg3) | EN 485 | 0/H111 | 190 | 240 | 80 | - | 12-18 |
H14 | 240 | 280 | 190 | - | 3-4 | ||
H18 | 290 | - | 250 | - | 1-2 | ||
H22 | 220 | 270 | 130 | - | 7-11 | ||
H32 | 220 | 270 | 130 | - | 7-11 | ||
H34 | 240 | 280 | 160 | - | 6-8 | ||
H36 | 265 | 305 | 190 | - | 4-6 | ||
EN AW-6016 (Al Si1,2Mg0,4) | EN 485 | T4 | 170 | 250 | 80 | 140 | 24 |
T6 | 260 | 300 | 180 | 260 | 10 | ||
EN AW-6082 (Al Si1MgMn) | EN 485 | O | - | 150 | - | 85 | 14-18 |
T4 | 205 | - | 110 | - | 12-15 | ||
T6 | 310 | - | 260 | - | 6-10 | ||
EN AW-7075 (Al Zn5,5MgCu) | EN 485 | O | - | 275 | - | 145 | 10 |
T6 | 545 | - | 475 | - | 6-8 | ||
T76 | 500 | - | 425 | - | 7-8 | ||
T73 | 460 | - | 385 | - | 7-8 | ||
EN AW-8011A (Al FeSi(A) | EN 485 | O/H111 | 85 | 130 | 30 | - | 19-25 |
H18 | 165 | - | 145 | - | 1-2 | ||
H24 | 125 | 165 | 100 | - | 3-6 |
EXPLICATION SUR LES DÉSIGNATIONS DES ÉTATS DE TRAITEMENT UTILISÉS DANS LES TABLEAUX EN 485-2
Désignation de l'état de traitement | Explication |
O | Recuit - les produits qui, après façonnage à chaud, présentent les propriétés requises pour l'état de recuit, peuvent être désignés par O. |
H14 | Écrouissage - Dureté 1/2 |
H16 | Écrouissage - Dureté 3/4 |
H18 | Écrouissage - Dureté 4/4 |
H19 | Écrouissage - Dureté extra |
H111 | Recuit et léger écrouissage (inférieur à H11) au cours des opérations finales telles que l'étirage ou l'aplatissage |
H22 / H32 | Écrouissage - Dureté 1/4 |
H24 / H34 | Écrouissage - Dureté 1/2 |
H26 / H36 | Écrouissage - Dureté 3/4 |
H321 | Écrouissage et stabilisation - La dureté 1/4 s'applique aux alliages d'aluminium-magnésium pour lesquels sont spécifiées une résistance à la corrosion par exfoliation et la corrosion intragranulaire. |
T4 | Solution et maturation naturelle |
T6 | Solution et maturation artificielle |
T73 | Solution et surmaturation artificielle, de façon à obtenir la meilleure résistance à la corrosion sous tension |
T76 | Solution et surmaturation artificielle, de façon à obtenir une bonne résistance à la corrosion par exfoliation |
ÉQUIVALENCES DANS LES DIFFÉRENTS ÉTATS |
H2 ~ H12 ~ H22 ~ H32 |
H4 ~ H14 ~ H24 ~ H34 |
H8 ~ H18 ~ H28 ~ H38 |
ALLOY GROUP
Group I | 1080A | 1070A | 1050A | 1220 | ||||
---|---|---|---|---|---|---|---|---|
3003 | 3103 | 3005 | 3105 | |||||
4006 | 4007 | |||||||
5005 | 5050 | |||||||
8011A | ||||||||
Group II | 2014 | 2017A | 2024 | |||||
3004 | ||||||||
5040 | 5049 | 5251 | 5052 | 5154A | 5454 | 5754 | 5182 | |
5083 | 5086 | |||||||
6061 | 6082 | |||||||
7020 | 7021 | 7022 | 7075 |
TOLÉRANCES EN ÉPAISSEUR
Épaisseur nominale | Tolérances en épaisseur pour largeurs nominales conformément à EN 485-4, de | ||||
≤ 1000 | 1000 < ET ≤ 1250 | ||||
> | ≤ | Alloy Group | Alloy Group | ||
I | II | I | II | ||
0,2 | 0,4 | ± 0,02 | ± 0,03 | ± 0,04 | ± 0,05 |
0,4 | 0,5 | ± 0,03 | ± 0,03 | ± 0,04 | ± 0,05 |
0,5 | 0,6 | ± 0,03 | ± 0,04 | ± 0,05 | ± 0,06 |
0,6 | 0,8 | ± 0,03 | ± 0,04 | ± 0,06 | ± 0,07 |
0,8 | 1 | ± 0,04 | ± 0,05 | ± 0,06 | ± 0,08 |
1 | 1,2 | ± 0,04 | ± 0,05 | ± 0,07 | ± 0,09 |
1,2 | 1,5 | ± 0,05 | ± 0,07 | ± 0,09 | ± 0,11 |
1,5 | 1,8 | ± 0,06 | ± 0,08 | ± 0,10 | ± 0,12 |
1,8 | 2 | ± 0,06 | ± 0,09 | ± 0,11 | ± 0,13 |
2 | 2,5 | ± 0,07 | ± 0,10 | ± 0,12 | ± 0,14 |
2,5 | 3 | ± 0,08 | ± 0,11 | ± 0,13 | ± 0,15 |
3 | 3,5 | ± 0,10 | ± 0,12 | ± 0,15 | ± 0,17 |
3,5 | 4 | ± 0,15 | - | ± 0,20 | - |
4 | 5 | ± 0,18 | - | ± 0,22 | - |
Dimensions en mm.
TOLÉRANCES EN LARGEUR
Épaisseur nominale t | tolerancias de corte estándar VINCO1) | Tolérances en largeur pour largeurs nominales conformément à la norme EN 485-4, de : | |||||||
> | ≤ | 3-15 | 15-50 | 50-150 | >150 | ≤ 100 | 100 < ET ≤ 300 | 300< ET ≤ 500 | 500 < ET ≤ 1250 |
- | 0,2 | 0;+0,15 | 0;+0,15 | 0;+0,15 | 0;+0,2 | - | - | - | - |
0,2 | 0,4 | 0;+0,15 | 0;+0,15 | 0;+0,15 | 0;+0,2 | 0;+0,3 | 0;+0,4 | 0;+0,6 | 0;+1,5 |
0,4 | 0,6 | 0;+0,17 | 0;+0,18 | 0;+0,2 | 0;+0,24 | 0;+0,3 | 0;+0,4 | 0;+0,6 | 0;+1,5 |
0,6 | 1 | 0;+0,17 | 0;+0,18 | 0;+0,2 | 0;+0,24 | 0;+0,3 | 0;+0,5 | 0;+1 | 0;+1,5 |
1 | 1,5 | 0;+0,2 | 0;+0,2 | 0;+0,2 | 0;+0,3 | 0;+0,4 | 0;+0,7 | 0;+1,2 | 0;+2 |
1,5 | 2 | sous consultation | 0;+0,26 | 0;+0,3 | 0;+0,32 | 0;+0,4 | 0;+1 | 0;+1,2 | 0;+2 |
2 | 2,5 | sous consultation | 0;+0,26 | 0;+0,3 | 0;+0,32 | 0;+1 | 0;+1 | 0;+1,5 | 0;+2 |
2,5 | 3 | sous consultation | sous consultation | 0;+0,32 | 0;+0,35 | 0;+1 | 0;+1 | 0;+1,5 | 0;+2 |
3 | 5 | sous consultation | sous consultation | 0;+0,32 | 0;+0,35 | - | 0;+1,5 | 0;+2 | 0;+3 |
Dimensions en mm.
1)Des tolérances dimensionnelles plus ajustées sont envisageables sur accord commercial.
TOLÉRANCES DE FLÈCHE
Largeur nominale (W) | Des tolérances plus ajustées sont envisageables pour le cintrage des rives sur accord commercial . | Tolérances conformément à la norme EN 485-4, de : pour le cintrage des rives | |
Écart maximal 2000 mm Épaisseur (t) | Écart maximal 2000 mm Épaisseur (t) | ||
t ≤ 1,20 mm | t > 1,20 mm | Tolérance en cintrage dmax | |
3 ≤ W < 6 | 10,00 | 15,00 | - |
6 < W ≤ 10 | 8,00 | 12,00 | - |
10 < W ≤ 20 | 4,00 | 6,00 | - |
20 < W < 25 | 2,00 | 4,00 | - |
25 ≤ W ≤ 100 | 2,00 | 4,00 | 8 1) |
100 | 2,00 | 4,00 | 6,00 |
300 < W ≤ 350 | 2,00 | 4,00 | 5,00 |
350 < W ≤ 600 | - | - | 5,00 |
600 < W ≤ 1000 | - | - | 4,00 |
Dimensions en mm.
1) Pour des largeurs nominales inférieures à 25 mm, les tolérances seront convenues au moment de la demande ou de la commande.
ONDULATION / PLANÉITÉ LONGITUDINALE
Espesor nominal t | tolerancias de corte estándar VINCO1) | Tolerancias en anchura para anchulas nominales según Norma EN 485-4 de: | |||||||
> | ≤ | 3-15 | 15-50 | 50-150 | >150 | ≤ 100 | 100 < Y ≤ 300 | 300< Y ≤ 500 | 500 < Y ≤ 1250 |
- | 0,2 | 0;+0,15 | 0;+0,15 | 0;+0,15 | 0;+0,2 | - | - | - | - |
0,2 | 0,4 | 0;+0,15 | 0;+0,15 | 0;+0,15 | 0;+0,2 | 0;+0,3 | 0;+0,4 | 0;+0,6 | 0;+1,5 |
0,4 | 0,6 | 0;+0,17 | 0;+0,18 | 0;+0,2 | 0;+0,24 | 0;+0,3 | 0;+0,4 | 0;+0,6 | 0;+1,5 |
0,6 | 1 | 0;+0,17 | 0;+0,18 | 0;+0,2 | 0;+0,24 | 0;+0,3 | 0;+0,5 | 0;+1 | 0;+1,5 |
1 | 1,5 | 0;+0,2 | 0;+0,2 | 0;+0,2 | 0;+0,3 | 0;+0,4 | 0;+0,7 | 0;+1,2 | 0;+2 |
1,5 | 2 | bajo consulta | 0;+0,26 | 0;+0,3 | 0;+0,32 | 0;+0,4 | 0;+1 | 0;+1,2 | 0;+2 |
2 | 2,5 | bajo consulta | 0;+0,26 | 0;+0,3 | 0;+0,32 | 0;+1 | 0;+1 | 0;+1,5 | 0;+2 |
2,5 | 3 | bajo consulta | bajo consulta | 0;+0,32 | 0;+0,35 | 0;+1 | 0;+1 | 0;+1,5 | 0;+2 |
3 | 5 | bajo consulta | bajo consulta | 0;+0,32 | 0;+0,35 | - | 0;+1,5 | 0;+2 | 0;+3 |
DESIGNATION OF THE BASIC STATES OF THE PROCESS
F: As fabricated
Applied to the semi-product fabrication process in which there are no special controls associated with the heat treatments or cold working processes carried out. No values have been established for the mechanical properties.
O: Annealed
Applied to semi-products with the purpose of achieving the state with the lowest strength.
H: Work hardened (Generally drawn/rolled).
Applied to semi-products with a strength that has increased after being cold worked, with or without an intermediate heat treatment to achieve a reduction in their mechanical properties.
W: Solution heat treated and cold worked
This state is only applied to alloys that spontaneously age at the ambient temperature after being heat treated and cold worked. This state is only used when the natural ageing time is indicated. For example, W 1/2 hour.
T: Heat treated to achieve structural hardening
Applied to semi-products that are heat treated to increase their mechanical strength, with or without additional work hardening, with the purpose of achieving a stable state.
SUBDIVISIONS OF THE BASIC ALUMINIUM TREATMENT STATES
1. SUBDIVISION OF STATE H: WORK HARDENED
H1: Work hardened only
The mechanical properties are achieved with final cold working.
H2: Work hardened and partially annealed
The mechanical properties are achieved with a final heat treatment. In general, this state has a larger elongation than H1 with the same strength.
H3: Work hardened and stabilised
Applied to semi-products hardened with cold plastic working, with mechanical properties that have been subsequently stabilised by a low-temperature heat treatment. In general, stabilisation reduces mechanical strength and increases ductility. This subdivision is only applicable to alloys that are softened at the ambient temperature if not stabilised, such as AlMg alloys.
HX2: 1/4 hard. Its tensile strength is approximately halfway between the annealed and semi-hard state.
HX4: Semi-hard. Its tensile strength is approximately halfway between the annealed and hard state.
HX6: 3/4 hard. Its tensile strength is approximately halfway between the semi-hard and hard state.
HX8: Hard. Maximum degree of work hardening generally used.
HX9: Extra hard. Its tensile strength exceeds that of the hard state. Odd digits indicate states in which the tensile strength is the mean corresponding to the states of adjacent even digits.
The next three digits after the letter H are used to designate forgeable alloys:
H (x)11: : Applied to semi-products that maintain their cold working hardness after final annealing, which prevents them from being classified as annealed (0), but which can be classified as H(x)1. Example: The degree of hardness achieved by controlled stress straightening is described as H111 (elongation of approximately 1%).
H 112: Applied to semi-products that can be work hardened at high temperatures, for which a series of mechanical property limits have been established.
H 113: : Applied to sheets that maintain their cold working hardness after final annealing, which prevents them from being classified as annealed (0), but which can be classified as H(x) (elongation of approximately 3%).
2. SUBDIVISION OF T STATES: HEAT TREATMENT
Digits 1 to 10 after the letter T indicate the specific sequences of basic treatments, as described next.
T1: Cooled from an elevated temperature-shaping process and naturally aged
Applied to semi-products that are cooled down from the extrusion temperature at the adequate speed (cold working), with the purpose of increasing their mechanical properties with a subsequent natural ageing process. This state includes the products that are subject to flattening or straightening with stress after cooling down, with no significant effects on the product's mechanical properties.
T3: Solution heat treated (1), cold worked (1), work hardened and naturally aged
Applied to semi-products that are cold worked and then work hardened after a solution heat treatment or cold working, with the purpose of improving their mechanical strength. This state includes the products that are subject to flattening or straightening with stress after cold working, which have an impact on the product's mechanical properties.
T4: Solution heat treated (1), cold worked (1) and naturally aged
Applied to semi-products that improve their mechanical properties after being solution heat treated, cold worked and naturally aged. This state includes the products that are subject to flattening or straightening with stress, with no effect on the product's mechanical properties.
T5: Cooled from an elevated temperature-shaping process and artificially aged
Applied to semi-products that are cooled down with forced air at the adequate speed (cold working) from the extrusion temperature, with the purpose of increasing their mechanical properties with a subsequent artificial ageing process. This state includes the products that are subject to flattening or straightening with stress after cooling down, with no significant effects on the product's mechanical properties.
T6: Solution heat treated (1), cold worked (1) and artificially aged
Applied to semi-products that improve their mechanical properties after a sudden solution heat treatment and artificial ageing. This state includes the products that are subject to flattening or straightening with stress, with no effect on the product's mechanical properties.
T7: Solution heat treated (1), cold worked (1) and artificially overaged / stabilised
Applied to semi-products that are artificially aged after being solution heat treated and cold worked, exceeding the limit corresponding to the maximum strength, with the purpose of controlling some of the product's significant properties.
T8: Solution heat treated (1), cold worked (1), work hardened and artificially aged
Applied to semi-products that are work hardened to a certain level between being cold worked and artificially aged to improve their strength. This state includes the products that are subject to flattening or straightening with stress after cold working, which have an impact on the product's mechanical properties.
T9: Solution heat treated (1), cold worked (1), artificially aged and work hardened
Applied to semi-products that are cold worked after being solution heat treated, cord worked and artificial aged, with the purpose of improving their mechanical strength.
T10: Cooled from an elevated temperature-shaping process, work hardened and artificially aged
Applied to semi-products that are subject to a specific work hardening process after cooling down (cold working) and before they are artificially aged.
A second digit is added (it must not be 0) to indicate variations in the treatment that significantly alter the properties of semi-products. The most significant variations are:
T31: 1% Solution heat treated, cold worked and work hardened.
T31: 1% Solution heat treated, cold worked and work hardened.
T41: Solution heat treated and cold worked, cooled down at a specific temperature.
T35: 1.5 to 3% Solution heat treated, cold worked and controlled stress applied.
T36: 7% Solution heat treated, cold worked and work hardened.
T42: Solution heat treated from 0 or F, cold worked and natural ageing.
T62: Solution treated from 0 or F, cold worked and natural ageing.
T51, T52, T53, T54: Cooling down (cold worked) from the extrusion temperature with different cooling levels, achieving different final mechanical properties with the same type of artificial ageing.
T53: Cooling (cold worked), from the extrusion and double artificial ageing temperature.
T61: Solution heat treated, cold worked and artificially aged under conditions other than T6.
T72: Stabilisation treated after T42.
T73: Solution heat treated, cold worked and aged with double treatment (stabilised to improve the resistance to corrosion under stress and ageing conditions).
T74: Solution heat treated, cold worked in water at a temperature above 50ºC and ageing with double treatment (Stabilisation + Ageing).
T76: Solution heat treated, cold worked and aged with double treatment (stabilised to improve the resistance to exfoliation corrosion + Ageing).
T81: Solution heat treated, cold worked, work hardened with forming and artificially aged. 1.5 to 3% Stress hardened.
T83: Similar to T8 for the Simagaltok 63/EN AW 6063 alloy.
T86: Solution heat treated, cold worked, work hardened and artificially aged. The degree of work hardening is usually the result of 6% stress straightening.
T87: Solution heat treated, cold worked, work hardened with forming and artificially aged. The degree of work hardening is usually the result of 7% stress straightening.
T89: Solution heat treated, cold worked and work hardened to achieve the mechanical properties and artificial ageing.
T93, T94: Solution heat treated, cold worked and work hardened to achieve the mechanical properties.
The third digit indicates the elimination of stresses by means of straightening with controlled stress, where:
T(x)51: Applied to semi-products, indicating the work hardening effects after final straightening with controlled stress (1 to 3%) after solution heat treatment and cold working. These bars will not be subject to subsequent straightening processes.
T(x)50: As in the previous state, but applied to extruded and drawn bars, sections and pipes: Work hardening percentage, straightened with controlled stress (3%), except for pipes (0.5 to 3%).
T(x)511: As in the previous state, but allowing a lower degree of drawing after controlled stress.